The Weaknesses of Euclidean Geometry: A Step of Needs Analysis of Non-Euclidean Geometry Learning through an Ethnomathematics Approach
Abstract Non-Euclidean Geometry is a complex subject for students. It is necessary to analyze the weaknesses of Euclidean geometry to provide a basis for thinking about the need for learning non-Euclidean geometry. The starting point of learning must be close to students' local minds and culture. The purpose of this study is to describe the weaknesses of Euclidean geometry as a step in analyzing the needs of non-Euclidean geometry learning through an ethnomathematics approach. This research uses qualitative descriptive methods. The subjects of this study were students of Mathematics Education at State Islamic University (UIN) Fatmawati Soekarno Bengkulu, Indonesia. The researcher acts as a lecturer and the main instrument in this research. Researchers used a spatial ability test instrument to explore qualitative data. The data were analyzed qualitatively descriptively. The result of this research is that there are two weaknesses of Euclidean geometry, namely Euclid’s attempt to define all elements in geometry, including points, lines, and planes. Euclid defined a point as one that has no part. He defined a line as length without width. The words "section", "length", and "width" are not found in Euclidean Geometry. In addition, almost every part of Euclid’s proof of the theorem uses geometric drawings, but in practice, these drawings are misleading. Local culture and ethnomathematics approach design teaching materials and student learning trajectories in studying Non-Euclid Geometry.
Downloads
References
Agusdianita, N., Widada, W., Afriani, N. H., Herawati, H., Herawaty, D., & Nugroho, K. U. Z. (2021). The exploration of the elementary geometry concepts based on Tabot culture in Bengkulu. Journal of Physics: Conference Series, (1731), 1–11. https://doi.org/10.1088/1742-6596/1731/1/012054
Andriani, D., Widada, W., Herawaty, D., Ardy, H., Nugroho, K. U. Z., Ma'rifah, N., … Anggoro, A. F. D. (2020). Understanding the number concepts through learning Connected Mathematics (CM): A local cultural approach. Universal Journal of Educational Research, 8(3), 1055–1061. https://doi.org/10.13189/ujer.2020.080340
Baker, B., Cooley, L., & Trigueros, M. (2000). A Calculus Graphing Schema. Journal for Research in Mathematics Education, 31(5), 557=578. https://doi.org/10.2307/749887
Bosnyak, A., & Kondor, R. N. (2008). The spatial ability and spatial geometrical knowledge of university students majored in mathematics. Acta Didactica Universitatis Comenianae. Mathematics, (8), 1–25.
Byrne's Euclid. (1847). The Elements of Euclide. Toronto: Library of The University of Toronto.
Cooley, L., Trigueros, M., & Baker, B. (2007). Schema Thematization: A Framework and an Example. Journal for Research in Mathematics Education, 38(4), 370–392. https://doi.org/10.2307/30034879
Dilling, F., & Vogler, A. (2021). Fostering Spatial Ability Through Computer-Aided Design: a Case Study. Digital Experiences in Mathematics Education. https://doi.org/10.1007/s40751-021-00084-w
Dubinsky, E., & McDonald, M. A. (2000a). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. Http:/Www.Telri.Ac.Uk/CM/Paper.Pdf.
Dubinsky, E., & McDonald, M. A. (2000b). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. USA: Georgia State University.
Dubinsky, E., & Wilson, R. T. (2013). High school students' understanding of the function concept. The Journal of Mathematical Behavior, 32(1), 83–101. https://doi.org/10.1016/s0732-3123(01)00065-7
Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (1994a). On learning fundamental concepts of group theory. Educational Studies in Mathematics, 27(3), 267–305. https://doi.org/10.1007/BF01273732
Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (1994b). On learning fundamental concepts of group theory. Educational Studies in Mathematics, 2–38.
Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (n.d.). On Learning Fundamental Concepts of Group Theory, 0(376 2).
Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2004). Same historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis, Part 1.
Eskisehir, O., & Ozlem, K. (2015). Investigation of the relationship between the spatial visualization success and visual/spatial intelligence capabilities of Sixth Grade students. International Journal of Instruction, 8(1), 189–204.
Fauzan, A., Slettenhaar, D., & Plomp, T. (2002). Traditional Mathematics Education vs . Realistic Mathematics Education : Hoping for Changes. Proceedings of the 3rd International Mathematics Education and Society Conference. Copenhagen: Centre for Research in Learning Mathematics, 1–4.
François, K. (2010). The Role of Ethnomathematics Within Mathematics Education. Proceedings of Cerme, 1517–1526. https://doi.org/10.1007/978-3-319-12688-3
Frassia, M. G., & Serpe, A. (2017). Learning Geometry Through Mathematical Modelling: An Example With Geogebra. Turkish Online Journal of Educational Technology, (Special Issue for INTE 2017).
Freudenthal, H. (1991). Revisiting Mathematics Educational. Dordrecht: Reidel Publising.
Gravemeijer, K. (1994). Developing Realistic Mathematics Education. Utrecht: Freudenthal Institute.
Gravemeijer, K. (2008). RME Theory and Mathematics. Tools and Processes in Mathematics Teacher Education, 283–302.
Güven, B., & Kosa, T. (2008). The effect of dynamic geometry software on student mathematics teachers' spatial visualization skills. Turkish Online Journal of Educational Technology, 7(4), 100–107.
Hankeln, C. (2021). Combining and Contrasting Formal Concept Analysis and APOS Theory. Educational Studies in Mathematics, 105(1), 1–14. https://doi.org/10.1007/s10649-018-9859-7
Heiberg, J. L. (1896). Euclid s Elements of Geometry. edited, and provided with a modern English translation by Richard Fitzpatrick. https://doi.org/10.1038/053241a0
Herawaty, D., Khrisnawati, D., Widada, W., & Mundana, P. (2020). The cognitive process of students in understanding the parallels axiom through ethnomathematics learning. IOP Conf. Series: Journal of Physics: Conf. Series 1470 (2020) 012077 Doi:10.1088/1742-6596/1470/1/012077, 1470, 1–8. https://doi.org/10.1088/1742-6596/1470/1/012077
Herawaty, D., Widada, W., Adhitya, A., Sari, R. D. W., & Novianita, L. (2020). Students' ability to simplify the concept of function through realistic mathematics learning with the ethnomathematics approach. IOP Conf. Series: Journal of Physics: Conf. Series 1470 (2020) 012031 Doi:10.1088/1742-6596/1470/1/012031, 1470, 1–8. https://doi.org/10.1088/1742-6596/1470/1/012031
Herawaty, D., Widada, W., Nugroho, K. U. Z., Falaq, A., & Anggoro, D. (2019). The Improvement of the Understanding of Mathematical Concepts through the Implementation of Realistic Mathematics Learning and Ethnomathematics. Advances in Social Science, Education and Humanities Research, Volume 295, 295(ICETeP 2018), 21–25.
Ishak, H., Sukestiyarno, Y. L., Waluya, S. B., Rochmad, & Mariani, S. (2021). Description of student's difficulty in understanding online mathematics learning materials. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042095
Junarti, Sukestiyarno, Y. L., Mulyono, & Dwidayati, N. K. (2020). The process of structure sense of group prerequisite material: A case in Indonesian context. European Journal of Educational Research, 9(3), 1047–1061. https://doi.org/10.12973/EU-JER.9.3.1047
Karadag, Z. (2009). Analyzing Students Mathematical Thinking in Technologie in Technologie-Supported Environments. University of Toronto. Retrieved from www.statisticshowto.com/wp.../06/Dyscalculia-createspace-v3.pdf
Kayhan, E. B. (2005). Investigation Of High School Students' Spatial Ability.
Kleinman, A. (1987). The Role of Culture. British Journal of Psychiatry, 151, 447–454.
Lubis, A., Widada, W., Herawaty, D., Nugroho, K. U. Z., & Anggoro, A. F. D. (2021). The ability to solve mathematical problems through realistic mathematics learning based on ethnomathematics. Journal of Physics: Conference Series, (1731), 1–7. https://doi.org/10.1088/1742-6596/1731/1/012050
Maharaj, A. (2010). An APOS Analysis of students' understanding of the concept of a limit of a function. Pythagoras, 0(71). https://doi.org/10.4102/pythagoras.v0i71.6
Maharani, H. R., & Sukestiyarno, Y. L. (2017). Learning Analysis based on Humanism Theory and Mathematics Creative Thinking Ability of Students. International Conference on Mathematics: Education, Theory, and Application (ICMETA), 1, 218–225.
Maharani, H. R., Sukestiyarno, Y. L., Waluya, S. B., & Mulyono, M. (2018). Design of creative thinking test in geometry based on information processing taxonomy model. Beta: Jurnal Tadris Matematika, 11(2), 144–155. https://doi.org/10.20414/betajtm.v11i2.180
Maier, P. H. (1998). Spatial Geometry and Spatial Ability - Hoe to Make Solid Geometry Solid? Selected Papers from the Annual Conference of Didactics of Mathematics 1996. Elmar Cohors-Fresenborg et All (Ed).. Osnabrueck, 1998, 69–81.
Marunić, G., & Glažar, V. (2014). Improvement and assessment of spatial ability in engineering education. Engineering Review, 34(2), 139–150.
Nugroho, K. U. Z., Widada, W., & Herawaty, D. (2019). The Ability To Solve Mathematical Problems Through Youtube Based Ethnomathematics Learning. International Journal of Scientific & Technology Research, 8(10), 1232–1237.
Nugroho, K. U. Z., Widada, W., Herawaty, D., Panduwinata, B., & Sospolita, N. (2021). Abstraction Ability of Students About Fractions Through Local Cultural Approaches. Advances in Social Science, Education and Humanities Research, (532), 480–485.
Plomp, T., & Nieveen, N. (2013). Educational Design Research Educational Design Research. Educational Design Research, (July), 1–206. https://doi.org/10.1007/978-1-4614-3185-5_11
Rosa, M., & Orey, D. C. (2011). Ethnomathematics: the cultural aspects of mathematics. Revista Latinoamericana de Etnomatemática, 4(2), 32–54.
Sukestiyarno, Y. L., Mashitoh, N. L. D., & Wardono, W. (2021). Analysis of Students' Mathematical Creative Thinking Ability in Module-assisted Online Learning in terms of Self-efficacy. Jurnal Didaktik Matematika, 8(1), 106–118. https://doi.org/10.24815/jdm.v8i1.19898
Treffers, A. (1991). Didactical background of a mathematics program for primary education. In L. Streefland (ed.), Realistic Mathematics Education in Primary School, CD-ß Press / Freudenthal Institute. Utrecht University. Utrecht: Freudenthal Institute.
Widada, W, Agustina, A., Serlis, S., Dinata, B. M., & Hasari, S. T. (2019). The abstraction ability of students in understanding the concept of geometry The abstraction ability of students in understanding the concept of geometry. Journal of Physics: Conference Series, 1318(012082), 1–7. https://doi.org/10.1088/1742-6596/1318/1/012082
Widada, W, Herawaty, D., Hudiria, I., Prakoso, Y. A., Anggraeni, Y. R., & Zaid, K. U. (2020). The understanding of the triangle in Lobachevsky Geometry through local culture. International Seminar on Applied Mathematics and Mathematics Education 2020 (2nd ISAMME 2020). Journal of Physics: Conference Series, 1657(012038), 1–7. https://doi.org/10.1088/1742-6596/1657/1/012038
Widada, W, Herawaty, D., Jumri, R., & Wulandari, H. (2020). Students of the extended abstract in proving Lobachevsky's parallel lines theorem. IOP Conf. Series: Journal of Physics: Conf. Series 1470 (2020) 012098 Doi:10.1088/1742-6596/1470/1/012098, 1470, 1–10. https://doi.org/10.1088/1742-6596/1470/1/012098
Widada, W, Herawaty, D., Widiarti, Y., Aisyah, S., & Tuzzahra, R. (2020). The cognitive process of students in understanding the triangles in Geometry of Riemann through local content. International Seminar on Applied Mathematics and Mathematics Education 2020 (2nd ISAMME 2020). Journal of Physics: Conference Series, 1657(012033), 1–8. https://doi.org/10.1088/1742-6596/1657/1/012033
Widada, W. (2002). Teori APOS sebagai suatu alat analisis dekomposisi genetik terhadap perkembangan konsep matematika seseorang. Journal of Indonesian Mathematicel Society (MIHMI), 8.
Widada, W. (2007). Development of triad level theory of calculus for mathematics students. Jurnal Inspirasi, 5(1), 1–12.
Widada, W. (2011). Mathematics Learning towards Extended Trans Level. Bengkulu: Program Pascacarjana Pendidikan Matematika Universitas Bengkulu.
Widada, W. (2016). Profile Of Cognitive Structure Of Students In Understanding The Concept Of Real Analysis. Journal of Mathematics Education (Infinity), 5(2), 83–98. https://doi.org/10.22460/infinity.v5i2.215
Widada, W. (2017). Beberapa Dekomposisi Genetik Siswa dalam Memahami Matematika. Jurnal Pendidikan Matematika Raflesia, 1(1), 44–54.
Widada, W., Efendi, S., Herawaty, D., & Nugroho, K. U. Z. (2020). The genetic decomposition of students about infinite series through the ethnomathematics of Bengkulu, Indonesia. IOP Conf. Series: Journal of Physics: Conf. Series 1470 (2020) 012078 Doi:10.1088/1742-6596/1470/1/012078, 1470, 1–9. https://doi.org/10.1088/1742-6596/1470/1/012078
Widada, W., Herawaty, D., & Lubis, A. N. M. T. (2018). Realistic mathematics learning based on the ethnomathematics in Bengkulu to improve students' cognitive level. Journal of Physics: Conference Series, 1088. https://doi.org/10.1088/1742-6596/1088/1/012028
Widada, W., Herawaty, D., Anggoro, A. F. D., & Nugroho, K. U. Z. (2019). The Trans Level Characteristics About Infinite Series. J U M A D I K A Jurnal Magister Pendidikan Matematika, 1(1), 19–24.
Widada, W., Herawaty, D., Beka, Y., Sari, R. M., & Riyani, R. (2020). The mathematization process of students to understand the concept of vectors through learning realistic mathematics and ethnomathematics. IOP Conf. Series: Journal of Physics: Conf. Series 1470 (2020) 012071 Doi:10.1088/1742-6596/1470/1/012071, 1470, 1–10. https://doi.org/10.1088/1742-6596/1470/1/012071
Widada, W., Herawaty, D., Falaq, A., Anggoro, D., Yudha, A., & Hayati, M. K. (2019). Ethnomathematics and Outdoor Learning to Improve Problem Solving Ability. Advances in Social Science, Education and Humanities Research, Volume 295, 295(ICETeP 2018), 13–16.
Widada, W., Herawaty, D., Ma'rifah, N., & Yunita, D. (2019). Characteristics of Students Thinking in Understanding Geometry in Learning Ethnomathematics. International Journal of Scientific & Technology Research, 8(11), 3496–3503.
Widada, W., Herawaty, D., Nugroho, K. U. Z., & Anggoro, A. F. D. (2019). The ability to Understanding of the Concept of Derivative Functions for Inter-Level Students During Ethnomathematics Learning. Journal of Physics: Conference Series, 1179(012056), 1–6. https://doi.org/10.1088/1742-6596/1179/1/012056
Widada, W., Nugroho, K. U. Z., Sari, W. P., & Pambudi, G. A. (2019). The ability of mathematical representation through realistic mathematics learning based on ethnomathematics. Journal of Physics: Conference Series, 1318(012073), 1–8. https://doi.org/10.1088/1742-6596/1318/1/012073
Widada, W., Nugroho, K. U. Z., Sari, W. P., & Pambudi, G. A. (2019). Characteristics of Students Thinking in Understanding Geometry in Learning Ethnomathematics. Journal of Physics: Conference Series, 1318(3), 1–6. https://doi.org/10.1088/1742-6596/1179/1/012056
Wu, D., & Ma, H. (2006). The Distributions of Van Hiele Levels of Geometric Thinking Among 1st Through 6th Graders. Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education, 5, 409–416.
Yurt, E., & Tünkler, V. (2016). A study on the spatial abilities of prospective social studies teachers: A mixed-method research. Kuram ve Uygulamada Egitim Bilimleri, 16(3), 965–986. https://doi.org/10.12738/estp.2016.3.0324
Copyright (c) 2021 Khathibul Umam Zaid Nugroho, Y. L. Sukestiyarno, Adi Nurcahyo

This work is licensed under a Creative Commons Attribution 4.0 International License.